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Previous work
Quasi-static simulation - RPAT

DynRPAT extends the RPAT [Oett2012] Beyond Gravity’s 

quasi-static rover simulation:

• What is kept:

→ Wheel-soil interaction [Oett2019] (slip from DP, load, 

sinkage)

→ DEM-based terrain modeling

→ Full mission post-processing

DynRPAT features a full dynamic rover model which 

supports:

• Rover acceleration / deceleration with changing wheel loads 

and slip-sinkage

• Wheel drop phase after a large obstacle (loss of soil contact)

• Long coasting phases, as in micro-g environments
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Quasi-static simulation with ExoMars rendered in 

Unigine.



Motivation
Why a simulation and why dynamic?

• Locomotion analysis drives the mission (e.g. landing site, mission 

targets)

• Modern rovers such as NASA/ESA SFR [Muirhead2020] travel up 

to 30x faster than ExoMars…

OR 

• evolve in low gravity such as DLR MASCOT [Ho2017] or 

MINERVA-II

→ Dynamics needs to be included
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The Sample Fetch Rover (SFR) in the field.



Motivation
State of the art for simulation

Multi body simulation (MBS):

• Highly accurate rover dynamics modelling

• Require comprehensive inputs

But

• Complexity prohibits quick parametric analysis

→ Low simulation speed

Quasi-static simulation:

• Trade-off between accuracy and simplicity / simulation speed

• Efficiently simulate and compare various rover designs

→ Good for early rover design

But

• Cannot support dynamic locomotion
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Motivation
What we propose

DynRPAT simulation that is computationally efficient 

and features:

• Highly-dynamic rover motion

• Full 6-DOF rover kinematics

• Newton Euler Equations of Motion

• Accurate wheel-soil interaction

Furthermore, it supports:

• High-quality planetary terrain import

• Statistical mission analysis
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Statistical mission analysis tool.



Dynamic Modelling Approach
Simulation loop design & assumptions

Based on 3 principal models:

• Wheel-soil interaction model

→ Compute external forces and moments on each wheel

• Equation of motion of the different bodies

→ Compute acceleration of system

• Kinematic model from acceleration

→ Compute the state vector of each sub-system

Assumptions:

• No air friction and no friction at joints (bogies)

• Infinite stiffness of kinematic chain (except wheel and soil)

• Ideal motor step response
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Dynamic Modelling Approach
Improved dynamic wheel-soil interaction

Serial double spring + damper system described as:

→ uwheel and usoil updated at each timestep given uhub

→ solve a differential equation ensuring stability in case 

of high stiffnesses (lower integration error)
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k = stiffness

b = damping

F = force

u = displacement



Dynamic Modelling Approach
Newton-Euler equations / solver and rover kinematics

Newton-Euler equations:

• Model accurately influence of external forces / torques

• Solved recursively for each part of the system

• Use rover geometry database (relative position, mass, 

parent parts)

Solver:

• Forward integration

→ Allow real-time simulation with error O(∆t)

• Beeman’s method [Beeman1976]

→ Allow smaller error O(∆t3)

Other optimisation:

• Custom Single Instruction Multiple Data (SIMD)

• Adaptive time step based on speed and hub displacement
8

Motion

External forces 



Preliminary Results
Demo

Egress from landing platform:

Dynamic Egress (“Crane”) testing:

• “skycrane” deployments, e.g. NASA MSL rovers

→ Accelerations, bogie motion and, orientation during 

free fall

→ Reaction forces and dynamics upon impact into soft 

or hard soil.
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“skycrane” deployment in DynRPAT



Preliminary Results
Computational speed

• The quasi-static original RPAT (quasi-static) was ~150x real-time speed during simulations

• DynRPAT with simple Newton Euler forward integration is 5x slower than real-time

• DynRPAT with the computational speedups (Beeman’s method, wheel-soil accurate finite-difference 

approximation, and SIMD support) is ~8x faster than real-time on typical CPU.
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Preliminary Results
Wheel drop testing

Comparison with ExoMars LVM rover:

• Wheel drop from different heights and impact on a hard plate equipped with 

force sensor
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→ Maximum force and steady 

state load correlate between 

simulation and test

→ Frequency response was 

not correlated → DynRPAT

is not designed for structural 

modal analysis.



Usability Features
Importing realistic features

GeoTIFF terrain import module:

• Feature high-resolution realistic terrains

• Support digital elevation models (DEMs)

• Include an editor to specify the heterogeneous soil types

→ a soil map: ES1/2/3/4

But

High-resolution terrain topography reconstruction with HiRISE 

can have noisy terrain with missing values

→ Especially true around extremes or blocking terrain such as 

craters
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Terrain selected in Oxia Planum for

import into DynRPAT



Usability Features
Importing realistic features

Cleaning:

• The algorithm is divided into three steps:

1) Outlier detection

→ Apply a Gaussian kernel (70x70) on terrain image

→ Compute difference between convolved and original 

image and ∆>0.7m = outlier

2) Interpolation by kriging [Margaret1990]

→ Train a Gaussian process regression (GPR) model 

on terrain to interpolate outliers and missing values

3) Correction of discontinuities from GPR

→ Convolve an averaging kernel (7x7) on boundaries 

(link heights)
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Terrain with missing values.

Terrain cleaning algorithm applied on noisy terrain 

with missing values.



Usability Features
Mission analysis and visualization

Parametrically tradeoff different missions 

against each other:

• Estimate instability of lander Egress by 

retrieving statistics of slope angles

→ Place lander randomly in realistic terrain

→ Calculate lander body and ramp angles

→ Assess percentage of lander placement 

which results in successful Egress

Realistically visualize in real-time simulated

rover traverses:

→ Use Unigine 3D engine

→ Rover/lander states transferred via TCP/IP
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Retrieved lander and ramp angles after 1’000 placements. Maximum 

values are indicated.

DynRPAT live simulation of ExoMars (left) and DynRPAT

visualization of ExoMars using Unigine 3D (right)
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Conclusion

DynRPAT is simulation tool for planetary exploration rover locomotion.

• Initial comparison with ESA ExoMars LVM rover test data show a good agreement with 

gradeability tests, wheel drop tests, and Egress tests from lander platforms

• DynRPAT features a combination of computational efficiency and medium-accuracy dynamic 

modeling

• DynRPAT is well suited to support iterative use-cases, such as preliminary design or operations 

support for future high-speed planetary exploration rovers
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Future Work

• Full correlation with ExoMars test data

→ With more step shape obstacles drop tests

• Correlation with test data from faster rovers, such as ESA/NASA’s SFR

→ Tests were performed at Beyond Gravity’s Zurich

• Improvement of wheel-soil contact point modeling

→ Unstable behavior of contact point quickly switching between hard soil (e.g. step shape obstacle) and 

soft soil → affecting drawbar pull

• Given computational speed, mission statistics can be retrieved for Egress and traversability to 

support locomotion optimization and selection of mission landing site

→ Random rover placements and related motion paths on realistic HiRISE/MRO terrains

→ Traversability by measuring the percentage of cases where the rover successfully reaches its target
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